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Abstract: Accurate pedestrian trajectory predictions are critical in self-driving systems, as they are fundamental
to the response- and decision-making of ego vehicles. In this study, we focus on the problem of predicting the
future trajectory of pedestrians from a first-person perspective. Most existing trajectory prediction methods
from the first-person view copy the bird’s-eye view, neglecting the differences between the two. To this end, we
clarify the differences between the two views and highlight the importance of action-aware trajectory prediction
in the first-person view. We propose a new action-aware network based on an encoder-decoder framework with
an action prediction and a goal estimation branch at the end of the encoder. In the decoder part, bidirectional
long short-term memory (Bi-LSTM) blocks are adopted to generate the ultimate prediction of pedestrians’ future
trajectories. Our method was evaluated on a public dataset and achieved a competitive performance, compared
with other approaches. An ablation study demonstrates the effectiveness of the action prediction branch.
Key words: pedestrian trajectory prediction, first-person view, action prediction, encoder-decoder, bidirectional
long short-term memory (Bi-LSTM)
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0 Introduction

Predicting the future behavior and trajectory of
agents (individuals, vehicles, etc.) is critical in many
applications[1], particularly in fields such as automo-
tive systems and robotics. Owing to the continuous
progress in autonomous driving systems and computer
vision[2-4], trajectory prediction has drawn considerable
attention from researchers. In the autonomous driving
field, understanding and predicting future trajectories
is a crucial component of perception, which is the basis
of path planning and decision-making[5-6].

Pedestrian trajectory prediction typically involves
two types of datasets: first-person and bird’s-eye view
datasets. For first-person view datasets, such as
the pedestrian intention estimation (PIE) dataset[7]

and joint attention in autonomous driving (JAAD)
dataset[8], scenes were captured using an on-board
camera moving along with the vehicle. For bird’s-
eye view datasets, such as Eidgenössische Technische
Hochschule Zürich (ETH) pedestrian dataset[9] and
University of Cyprus (UCY) multi-person trajectory
dataset[10], scenes were captured in public spaces from
overhead.
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Most existing pedestrian trajectory prediction meth-
ods focus on bird’s-eye view datasets[11-14]. However,
in practice, only the first-person view can be applied
to autonomous driving systems. In this study, we fo-
cus on the problem of predicting the future trajectory of
pedestrians in the first-person view. Currently, some re-
search on trajectory prediction in the first-person view
ignores that, in addition to the motion of pedestrians,
the constantly changing viewpoint of the camera also
affects the 2D position of pedestrians[15-16]. Even for
standing pedestrians, their bounding boxes appear at
different positions in different frames owing to the mo-
tion of the ego vehicle. In general, the source of the shift
of bounding boxes is composed of two elements: pedes-
trian movement and ego-vehicle motion. Evidently, the
trajectories of standing pedestrians are more affected by
the ego-vehicle’s motion, and therefore, the trajectories
for pedestrians walking are more affected by their own
movement. Therefore, the performance of trajectory
prediction may be improved if we predict the action
(standing/walking) first, and use it as a weight between
those two facts for the bounding box shift. Moreover,
recent research has shown that trajectory prediction is
improved if the goal, which is the bounding box in the
last frame we must predict, is predicted first[17-19].

To this end, we propose an action-aware net-
work for bridge action and trajectory prediction. The
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entire network is based on an encoder-decoder archi-
tecture. The input of the entire network includes three
components: bounding boxes, ego-vehicle motion, and
pedestrian pose estimation. The long short-term mem-
ory (LSTM) blocks encode the inputs into a vector[20],
along with the action and goal prediction. For the de-
coder part, bidirectional long short-term memory (Bi-
LSTM) is used to predict the future trajectory with
the help of goal prediction, where the action prediction
functions generate weights for the ego-vehicle motion,
which is the input of the Bi-LSTM.

In summary, the contributions of this study can be
summarized as follows: we propose a framework to re-
alize pedestrian trajectory and action prediction, and
we show that action prediction can help offer a weight
between pedestrian movement and ego-vehicle motion,
and our method achieves a competitive performance
compared with other algorithms on the PIE dataset.

1 Related Work

1.1 Pedestrian Trajectory Prediction for
Bird’s-Eye View

Various studies are being conducted on the pedes-
trian trajectory prediction problem using static cam-
eras (bird’s-eye view). These methods tend to focus
on pedestrian-to-pedestrian and pedestrian-to-vehicle
interaction. Among these methods, social LSTM is
a typical framework for bird’s-eye view trajectory
prediction[11], combining local and global information
obtained by LSTM blocks with a pooling mechanism.
Other models utilize generative adversarial networks
(GANs) to learn the latent distribution of pedestrian
trajectories based on past observations[21-23]. However,
these methods fail on first-person view datasets, by ne-
glecting the movement of the camera, that is, the ego-
vehicle motion.
1.2 Pedestrian Trajectory Prediction for First-

Person View
The first-person view has richer dynamic visual in-

formation of the scene than that of bird’s-eye view
and hence, is more practical for autonomous driving
systems[24]. However, relatively less research has been
conducted on the first-person view. Yao et al.[15] used
a conditional variational auto-encoder (CVAE)[25-27] to
learn future trajectory distributions using a stochas-
tic latent variable with the help of a Gaussian mixture
model (GMM)[28]. Their study was conducted on both
bird’s-eye and first-person view datasets without ex-
ploring their differences.

Recently, some studies have noticed the effect of
ego-vehicle motion, attempting to disentangle the two
sources of the shift of bounding boxes, that is, the
actual movement of pedestrians and ego-vehicle mo-
tion. Quan et al.[29] designed a holistic LSTM block
to encode the motion of a pedestrian and ego-vehicle,

which is estimated from the optical flow. Neumann
and Vedaldi[30] introduced a self-supervised camera-
pose prediction network to predict the entire future
frame, which infers the ego-vehicle motion. The pedes-
trian trajectory is then projected onto the predicted
frame, in which the two sources are thoroughly decou-
pled. However, these methods attempt to solve this
problem either by introducing the optical flow of the
video or feeding the entire picture to the network, which
considerably increases the computational complexity.

Some work has been conducted to attempt to solve
this problem in 3D space using light detection and rang-
ing (LIDAR) equipment[31-33]. The main drawback
of LIDAR-based methods is their high computational
complexity and low resolution for distant objects.
1.3 Goal Estimation for Trajectory Prediction

Goal estimation has proven its effectiveness in tra-
jectory prediction. Rehder and Kloeden[18] used the
estimated goal distribution as prior information in a
prediction procedure based on a particle-filter method.
Deo and Trivedi[34] utilized inverse reinforcement learn-
ing (IRL) to estimate the goal states that are sent to
the decoder along with past trajectory encodings to
generate the final prediction. Yao et al.[15] designed
a bidirectional trajectory network in which goals are
first predicted and then propagated back.

Following this idea, we adopted goal estimation as
a branch at the end of the encoder to generate more
accurate trajectories.
1.4 Action Prediction for Trajectory

Prediction
The definition of an action in trajectory prediction

is vague[7], including behaviors and statuses such as
walking, standing, crossing the road, and not cross-
ing the road. In terms of the impact of ego-vehicle
motion and pedestrians moving on the bounding box
shift, the movement of the bounding box for standing
pedestrians is more easily affected by ego-vehicle mo-
tion, whereas walking people are influenced more by
their own movement. Therefore, we pay more atten-
tion to the walking status of pedestrians, and we refer
to the “standing/walking” behavior as “action.” Fang
and López[35] showed that 2D pose estimation can help
recognize the behaviors of pedestrians and determine
pedestrian intentions, such as crossing roads and stop-
ping before crossing the road. Enlightened by this find-
ing, we used 2D pose estimation in the input module to
estimate pedestrian actions. We chose OpenPose as our
2D pose-estimation generator because of its simplicity
and satisfactory performance[36].

2 Methodology

The target of this problem is to forecast the future
pedestrian trajectory of a specific pedestrian based on
observed frames and information about the ego vehicle.
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We first present the formulations of this problem and
then introduce the network. Figure 1 illustrates the
overall architecture.
2.1 Formulations

Given a short video cut of a specific labeled pedes-
trian in the past t frames, trajectory prediction aims to
predict the bounding box of this specific pedestrian in
the subsequent τ frames. The bounding box of the ith
pedestrian at the time step j can be specified by the
top-left (TL) and bottom-right (BR) coordinates of a
pixel:

bi,j = {(xTL, yTL), (xBR, yBR)}. (1)

The observation of the bounding boxes of the ith pedes-
trian for t time steps can be expressed as

OB
i = {bi,1, bi,2, · · · , bi,t}. (2)

The future sequences of the bounding boxes of the ith
pedestrian from the time step t to the time step t + τ
can be expressed as

PB
i = {bi,t+1, bi,t+2, · · · , bi,t+τ}. (3)

The motion information of the ego vehicle includes its
speed, roll, yaw, pitch, and heading angle, which is de-
noted as mV

j at the time step j, and the observation of

motion information for t time steps can be expressed as

OVM = {mV
1 , mV

2 , · · · , mV
t }. (4)

The pedestrian pose information is a 36-dimensional
vector for every pedestrian i in each frame, which is
denoted as pi,j at the time step j, and the observation
of pedestrian pose of the ith pedestrian for t time steps
can be expressed as

OP
i = {pi,1, pi,2, · · · , pi,t}. (5)

We denote the action at the time step j of the ith pedes-
trian as ai,j ∈ {0, 1}: 0 for walking, and 1 for standing.
The action sequence of the prediction time of the ith
pedestrian can be denoted as

PA
i = {ai,t+1, ai,t+2, · · · , ai,t+τ}. (6)

2.2 Input Module and Encoder
As shown in Fig. 2, the input of our network includes

three components: the observation bounding boxes,
ego-vehicle’s motion, and pedestrian pose estimation.
The first two components are labeled in the dataset,
and the pose estimation is generated by a pretrained
OpenPose network. First, we used a multilayer percep-
tron (MLP) to resize the inputs to a shape of (t, 128)
separately, which were added together and then fed to

LSTM Bi-LSTM
Sequence feature

...

Action estimation

t+1 t+2 t+τ
...

...
Goal estimation

Trajectory prediction

EncoderInput module

Bounding boxes

Ego-vehicle’s
motion

Ego-vehicle’s
future motion

Decoder

Pedestrian pose

Fig. 1 Architecture overview of action-aware network

LSTM

MLP

MLP

Goal estimation

Sequence
feature

Action estimation

t+1 t+2 t+τ
...

(t, 128)

Bounding boxes (t, 4)

Ego-vehicle’s motion (t, 5)

Pedestrian pose (t, 36)

...

MLP (t, 128)

MLP (t, 128)

MLP

Fig. 2 Input module and network encoder



J. Shanghai Jiao Tong Univ. (Sci.), 2023, 28(1): 20-27 23

the LSTM blocks to generate the output of the encoder.
The sequence feature of the ith pedestrian can be ex-
pressed as

f seq
i = M(S(OB

i ) + S(OVM) + S(OP
i )), (7)

where M(·) is a 128-hidden-unit LSTM block function,
and S(·) is a three-layer MLP function.

The feature is then sent to two branches by the MLP
to predict the action of the pedestrian and goal, which
is the bounding box of the last frame that needs to be
predicted. The procedure can be described as follows:

P̂A
i = S(f seq

i ), (8)

b̂i,t+τ = S(f seq
i ), (9)

where P̂A
i denotes the action prediction for the ith

pedestrian, and b̂i,t+τ denotes the goal estimation at
the time step t + τ .

Note that the action prediction is a vector with a
length τ , where each element represents the action pre-
diction for every time step. The element in the ac-
tion prediction is a double number ranging from 0 to
1, where 0 stands for “walking,” and 1 for “standing.”
For example, when the estimation is 0.95 for a spe-
cific pedestrian in one frame, the pedestrian tends to
be “standing” based on our prediction.

2.3 Decoder
The main part of the decoder is the Bi-LSTM. The

output of the encoder is the beginning of the forward
LSTM, and the goal estimation is the beginning of the
backward LSTM. The forward and backward LSTMs
exchange information at the same time step. The in-
put to the Bi-LSTM block originates from the motion of
the ego vehicle at the corresponding time step. As dis-
cussed, the action can measure the ratio of ego-vehicle
movement in the shift of bounding boxes. The action
prediction is fed to a mask function before it is used as
the weight of the ego-vehicle motion. Figure 3 shows
the decoder procedure.

In general, the decoder procedure is expressed as

P̂B
i = MBi(Oenc, b̂i,t+τ , σ(P̂A

i ) · PVM), (10)

where P̂B
i is the prediction of the future sequences of

the bounding boxes of the ith pedestrian, Oenc is the
output of the decoder, PVM is the future motion infor-
mation of the ego vehicle, σ(·) is the mask function,
MBi is a 128-hidden-unit Bi-LSTM block function, and
“·” represents multiplication at each time step.

To smooth the multiplication and avoid the case in
which no information from the ego vehicle is used when
the action prediction is 0, we chose the sigmoid function
as the mask function.
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2.4 Loss Function
In the training stage, three loss functions were

adopted in the network: goal estimation, action pre-
diction, and trajectory loss. The goal estimation loss is
as follows:

Lgoal = ‖bi,t+τ − b̂i,t+τ‖2. (11)

The action prediction loss is as follows:

Lact =
t+τ∑

j=t+1

[−ai,j log(âi,j) − (1 − ai,j) log(1 − âi,j)], (12)

where âi,j is the action prediction for the ith pedestrian
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at the time step j.
The trajectory loss is as follows:

Ltra =
t+τ∑

j=t+1

‖bi,j − b̂i,j‖2. (13)

The entire function training loss is expressed with
hyperparameters as follows:

Ltotal = αLgoal + βLact + γLtra, (14)

where α, β, and γ are weights.

3 Experiments

In this section, we describe the evaluation of the pro-
posed method. First, the dataset and its implementa-
tion details are presented. Subsequently, we discuss the
evaluation experiments and ablation studies conducted.
3.1 Dataset

Recently, numerous public datasets have been used
for trajectory prediction. Among them, we chose the
PIE dataset to test our model because of its abundant
labels on ego-vehicle motion information and pedestrian
actions.

The PIE dataset is a first-person view driving dataset
containing 909 480 frames, in which 293 437 frames are
annotated with 1 842 pedestrians. The dataset includes
more than 6 h of video footage of pedestrian, which is
divided into training/testing/validation subsets by shot
length at a ratio of 50 : 40 : 10. All videos were recorded
at 1 920pixel × 1 080 pixel at 30 frames per second.
This is the only dataset that contains both pedestrian
action labels and detailed ego-vehicle motion informa-
tion, which is suitable for our network.

3.2 Implementation Details
The framework was implemented using Pytorch, and

the model was trained on four GeForce GTX 1080Ti
GPUs. In the training stage, we set the batch size to 64
and total epoch to 50. The model used an exponential
learning rate scheduler with a learning rate of 0.001.
The observation time was set to 0.5 s, which contains 15
frames, and the periods of the prediction time denoted
by tp were set to 0.5 s, 1.0 s, and 1.5 s, which contain
15, 30, and 45 frames, respectively. The hidden unit
was set to 128 for the LSTM blocks in the encoder
and decoder. To reduce the impact of uncertainties, we
conducted each experiment five times and calculated
the mean results as the final performance, as shown in
Table 1. The hyperparameters set for the loss function
are α = 1, β = 5, and γ = 0.2.
3.3 Evaluation

The proposed method was evaluated based on the
standard metrics: ① the mean-square errors (MSEs)
of the bounding box corners in 0.5 s, 1.0 s, and 1.5 s,
denoted by XMS,0.5, XMS,1.0, and XMS,1.5, respectively;
② MSE of the bounding box center over the sequence
from 0 s to 1.5 s, denoted by XMS,C; ③MSE of the
bounding box center in the last prediction frame, de-
noted by XMS,CF.

In general, our method outperforms the traditional
methods, as listed in Table 1. The action prediction
accuracy was 92.5%. The results show that our model
presents a lower error than the other models for a longer
forecasting time. This may be because the relationship
between pedestrian action and ego-vehicle motion may
be less close when the prediction time is short. Our
action-aware model can better capture the shift of the
bounding box over a long time, which indicates that the
relationship between the action and ego-vehicle motion
becomes closer over time.

Table 1 Model performance on PIE dataset

Method XMS,0.5/pixel XMS,1.0/pixel XMS,1.5/pixel XMS,C/pixel XMS,CF/pixel

Linear 233 857 2 303 1 565 6 111

LSTM 289 569 1 558 1 473 5 766

Bi-LSTM 159 539 1 535 1 447 5 615

PIEtraj
[7] 110 399 1 280 1 183 4 780

BiTraP-D[15] 41 161 511 481 1 949

Ours 43 160 457 436 1 683

3.4 Ablation Studies

We conducted ablation experiments on the PIE
dataset concerning two branches: input combination
and mask function.

To prove the effect of each branch, we conducted ex-
periments with and without each branch, and the re-

sults are presented in Table 2. First, by comparing the
first and third rows, the results indicate the effective-
ness of the action branch. Second, by comparing the
first and second rows, the results indicate the validity
of the goal estimation. Ultimately, based on the final
row, the combination of these two branches shows a
synergistic effect.
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Table 2 Ablation experiments on different decoder inputs

Method XMS,0.5/pixel XMS,1.0/pixel XMS,1.5/pixel XMS,C/pixel XMS,CF/pixel

No estimation 89 523 1 329 1 028 4 764

Only goal estimation 76 320 747 546 3 064

Only action prediction 69 295 658 532 2 374

Goal + action branches 43 160 457 436 1 683

We also experimented with different input combina-
tions. The results in Table 3 show the effectiveness of
pose estimation for action prediction. The accuracy of
the action prediction can be improved from 78.6% to
92.5% when a 2D pose is added to the network. In ad-
dition, we show that the combination of the speed, roll,
yaw, pitch, and heading angle yields the best illustra-
tion of an ego vehicle. Moreover, the combination of
the bounding box, ego-vehicle motion, and pose results
in the best performance.

Finally, we used different mask functions for action
prediction, and the results are shown in Table 4. We
compared the uses of no functions, a linear function
that maps (0, 1) to (0.5, 1) linearly, and a sigmoid
function. The results indicate that the smoother the
mask function, the better the model performance. The
sigmoid function was the best choice among the three

choices. The results satisfy our expectation because we
aim to avoid the situation in which the weight for the
ego-vehicle motion is 0, which indicates that no ego-
vehicle motion is used in the decoder.

Figure 4 shows the performance on the PIE dataset,

Table 3 Ablation experiments on different inputs

Input Is the input applied?

Bounding box
√ √ √ √

Speed
√ √ √

Roll, yaw, pitch
√ √

Heading angle
√ √

Pose
√ √

Accuracy for action prediction/% 87.3 76.5 78.6 92.5

XMS,1.5/pixel 625 571 485 457

Table 4 Ablation experiments on mask function

Function XMS,0.5/pixel XMS,1.0/pixel XMS,1.5/pixel XMS,C/pixel XMS,CF/pixel

No functions 78 290 660 568 2 303

Linear 46 172 460 458 1 758

Sigmoid 43 160 457 436 1 683

tp=0s tp=0.5s tp=1.0s tp=1.5s

Fig. 4 Visualization examples of pedestrain trajectory predictions (red for ground truth and green for prediction)
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where the pedestrians in the first and second rows are
estimated as “walking” over the entire prediction time,
and the pedestrian in the third row is estimated as
“standing.”

4 Conclusion

In this study, we propose an action-aware network
for pedestrian trajectory prediction in the first-person
view based on an encoder-decoder architecture with
LSTM blocks. Unlike bird’s-eye view datasets, the ego-
vehicle motion should be considered for the movement
of bounding boxes in first-person view datasets, partic-
ularly for standing pedestrians. We designed an action
prediction branch and goal estimation at the end of the
encoder, and designed a corresponding loss function.
The main part of the decoder is a Bi-LSTM with ego-
vehicle motion information as the input, where the ac-
tion prediction is applied as a mask for the ego-vehicle
motion.

The method is evaluated on a first-person view
dataset and exhibits a competitive performance, and
the ablation study demonstrates the significance of the
action prediction.
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ing Systems. Montréal: Neural Information Processing
Systems Foundation, 2015: 3483-3491.

[28] REYNOLDS D. Gaussian mixture models
[M]//Encyclopedia of biometrics. Boston, MA:
Springer, 2009: 659-663.

[29] QUAN R J, ZHU L C, WU Y, et al. Holistic LSTM
for pedestrian trajectory prediction [J]. IEEE Trans-
actions on Image Processing, 2021, 30: 3229-3239.

[30] NEUMANN L, VEDALDI A. Pedestrian and ego-
vehicle trajectory prediction from monocular camera
[C]//2021 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. Nashville, TN: IEEE,
2021: 10199-10207.

[31] RHINEHART N, KITANI K M, VERNAZA P. R2P2:
A reparameterized pushforward policy for diverse, pre-
cise generative path forecasting [M]//Computer vision
– ECCV 2018. Cham: Springer, 2018: 794-811.

[32] LI J C, MA H B, TOMIZUKA M. Conditional gen-
erative neural system for probabilistic trajectory pre-
diction [C]//2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. Macao: IEEE,
2019: 6150-6156.

[33] CHOI C, MALLA S, PATIL A, et al. DROGON:
A causal reasoning framework for future trajec-
tory forecast [EB/OL]. (2020-11-06) [2022-04-19].
https://arxiv.org/abs/1908.00024.

[34] DEO N, TRIVEDI M M. Trajectory forecasts
in unknown environments conditioned on grid-
based plans [EB/OL]. (2021-04-29) [2022-04-19].
https://arxiv.org/abs/2001.00735.
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